Direct evolution of genetic robustness in microRNA.
نویسندگان
چکیده
Genetic robustness, the invariance of the phenotype in the face of genetic perturbations, can endow the organism with reduced susceptibility to mutations. A large body of work in recent years has focused on the origins, mechanisms, and consequences of robustness in a wide range of biological systems. Despite the apparent prevalence of mutational robustness in nature, however, its evolutionary origins are still unclear. Does robustness evolve directly by natural selection or is it merely a correlated byproduct of other phenotypic traits? By examining microRNA (miRNA) genes of several eukaryotic species, we show that the structure of miRNA precursor stem-loops exhibits a significantly high level of mutational robustness in comparison with random RNA sequences with similar stem-loop structures. Hence, this excess robustness of miRNA goes beyond the intrinsic robustness of the stem-loop hairpin structure. Furthermore, we show that it is not the byproduct of a base composition bias or of thermodynamic stability. These findings suggest that the excess robustness of miRNA stem-loops is the result of direct evolutionary pressure toward increased robustness. We further demonstrate that this adaptive robustness evolves to compensate for structures with low intrinsic robustness.
منابع مشابه
Bioinformatic Analysis of the Neutrality of RNA Secondary Structure Elements across genotypes reveals Evidence for Direct Evolution of Genetic Robustness in HCV
The properties and origin of genetic robustness have recently been investigated in several works that examined microRNA stem-loop structures, and a variety of conclusions have been reached without agreement. Considering that this is a universal phenomenon that is not restricted to miRNAs, we recall the original work on this topic that began from looking at viral RNAs of several types. We provid...
متن کاملCongruent evolution of genetic and environmental robustness in micro-RNA.
Genetic robustness, the preservation of an optimal phenotype in the face of mutations, is critical to the understanding of evolution as phenotypically expressed genetic variation is the fuel of natural selection. The origin of genetic robustness, whether it evolves directly by natural selection or it is a correlated byproduct of other phenotypic traits, is, however, unresolved. Examining micro-...
متن کاملNeutral evolution of robustness in Drosophila microRNA precursors.
Mutational robustness describes the extent to which a phenotype remains unchanged in the face of mutations. Theory predicts that the strength of direct selection for mutational robustness is at most the magnitude of the rate of deleterious mutation. As far as nucleic acid sequences are concerned, only long sequences in organisms with high deleterious mutation rates and large population sizes ar...
متن کاملAdaptive Genetic Robustness of Escherichia coli Metabolic Fluxes.
Genetic robustness refers to phenotypic invariance in the face of mutation and is a common characteristic of life, but its evolutionary origin is highly controversial. Genetic robustness could be an intrinsic property of biological systems, a result of direct natural selection, or a byproduct of selection for environmental robustness. To differentiate among these hypotheses, we analyze the meta...
متن کاملMulti-objective optimization of time-cost-quality-carbon dioxide emission-plan robustness in construction projects
Today, the construction industry is facing intense competition and success in this competition depends on several factors. Project managers try to minimize project time and cost, carbon dioxide emission and at the same time maximizing the quality of project and its plan robustness. In this paper, study construction project scheduling considering a discrete trade-off between time, cost, quality,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 17 شماره
صفحات -
تاریخ انتشار 2006